extension | φ:Q→Out N | d | ρ | Label | ID |
(C23xD7).1C22 = D14:C4:5C4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).1C2^2 | 448,203 |
(C23xD7).2C22 = C2.(C4xD28) | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).2C2^2 | 448,204 |
(C23xD7).3C22 = (C2xC28):5D4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).3C2^2 | 448,205 |
(C23xD7).4C22 = (C2xDic7):3D4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).4C2^2 | 448,206 |
(C23xD7).5C22 = (C2xC4).20D28 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).5C2^2 | 448,207 |
(C23xD7).6C22 = (C2xC4).21D28 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).6C2^2 | 448,208 |
(C23xD7).7C22 = (C22xD7).9D4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).7C2^2 | 448,209 |
(C23xD7).8C22 = (C22xD7).Q8 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).8C2^2 | 448,210 |
(C23xD7).9C22 = (C2xC28).33D4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).9C2^2 | 448,211 |
(C23xD7).10C22 = D7xC23:C4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 56 | 8+ | (C2^3xD7).10C2^2 | 448,277 |
(C23xD7).11C22 = (C2xC4):6D28 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).11C2^2 | 448,473 |
(C23xD7).12C22 = (C2xC42):D7 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).12C2^2 | 448,474 |
(C23xD7).13C22 = C24.13D14 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).13C2^2 | 448,491 |
(C23xD7).14C22 = C23.45D28 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).14C2^2 | 448,492 |
(C23xD7).15C22 = C24.14D14 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).15C2^2 | 448,493 |
(C23xD7).16C22 = C23:2D28 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).16C2^2 | 448,494 |
(C23xD7).17C22 = C23.16D28 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).17C2^2 | 448,495 |
(C23xD7).18C22 = (C2xD28):10C4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).18C2^2 | 448,522 |
(C23xD7).19C22 = D14:C4:7C4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).19C2^2 | 448,524 |
(C23xD7).20C22 = (C2xC4):3D28 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).20C2^2 | 448,525 |
(C23xD7).21C22 = (C2xC28).289D4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).21C2^2 | 448,526 |
(C23xD7).22C22 = (C2xC28).290D4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).22C2^2 | 448,527 |
(C23xD7).23C22 = (C2xC4).45D28 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).23C2^2 | 448,528 |
(C23xD7).24C22 = C23.28D28 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).24C2^2 | 448,747 |
(C23xD7).25C22 = C24.21D14 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).25C2^2 | 448,757 |
(C23xD7).26C22 = (C22xQ8):D7 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).26C2^2 | 448,765 |
(C23xD7).27C22 = C2xC28:4D4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).27C2^2 | 448,928 |
(C23xD7).28C22 = C2xC4.D28 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).28C2^2 | 448,929 |
(C23xD7).29C22 = C2xC42:2D7 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).29C2^2 | 448,931 |
(C23xD7).30C22 = C24.24D14 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).30C2^2 | 448,939 |
(C23xD7).31C22 = C24.27D14 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).31C2^2 | 448,943 |
(C23xD7).32C22 = C2xDic7.D4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).32C2^2 | 448,944 |
(C23xD7).33C22 = C2xC22.D28 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).33C2^2 | 448,945 |
(C23xD7).34C22 = C2xC4:C4:D7 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).34C2^2 | 448,965 |
(C23xD7).35C22 = C42:7D14 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).35C2^2 | 448,974 |
(C23xD7).36C22 = C42:9D14 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).36C2^2 | 448,978 |
(C23xD7).37C22 = C42:10D14 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).37C2^2 | 448,980 |
(C23xD7).38C22 = C42:11D14 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).38C2^2 | 448,998 |
(C23xD7).39C22 = D28:23D4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).39C2^2 | 448,1003 |
(C23xD7).40C22 = D4:5D28 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).40C2^2 | 448,1007 |
(C23xD7).41C22 = C42:16D14 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).41C2^2 | 448,1009 |
(C23xD7).42C22 = C42:17D14 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).42C2^2 | 448,1013 |
(C23xD7).43C22 = C24.33D14 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).43C2^2 | 448,1044 |
(C23xD7).44C22 = C24.34D14 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).44C2^2 | 448,1045 |
(C23xD7).45C22 = D7xC4:D4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).45C2^2 | 448,1057 |
(C23xD7).46C22 = C14.382+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).46C2^2 | 448,1060 |
(C23xD7).47C22 = C14.402+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).47C2^2 | 448,1063 |
(C23xD7).48C22 = D28:20D4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).48C2^2 | 448,1065 |
(C23xD7).49C22 = C14.422+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).49C2^2 | 448,1066 |
(C23xD7).50C22 = C14.462+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).50C2^2 | 448,1070 |
(C23xD7).51C22 = C14.482+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).51C2^2 | 448,1073 |
(C23xD7).52C22 = D28:21D4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).52C2^2 | 448,1083 |
(C23xD7).53C22 = C14.512+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).53C2^2 | 448,1087 |
(C23xD7).54C22 = C14.532+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).54C2^2 | 448,1090 |
(C23xD7).55C22 = C14.562+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).55C2^2 | 448,1097 |
(C23xD7).56C22 = D7xC22.D4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).56C2^2 | 448,1105 |
(C23xD7).57C22 = C14.1212+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).57C2^2 | 448,1107 |
(C23xD7).58C22 = C14.612+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).58C2^2 | 448,1110 |
(C23xD7).59C22 = C14.1222+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).59C2^2 | 448,1111 |
(C23xD7).60C22 = C14.622+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).60C2^2 | 448,1112 |
(C23xD7).61C22 = C14.682+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).61C2^2 | 448,1119 |
(C23xD7).62C22 = D7xC4.4D4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).62C2^2 | 448,1126 |
(C23xD7).63C22 = C42:18D14 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).63C2^2 | 448,1127 |
(C23xD7).64C22 = D28:10D4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).64C2^2 | 448,1129 |
(C23xD7).65C22 = C42:20D14 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).65C2^2 | 448,1131 |
(C23xD7).66C22 = C42:21D14 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).66C2^2 | 448,1132 |
(C23xD7).67C22 = D7xC42:2C2 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).67C2^2 | 448,1156 |
(C23xD7).68C22 = C42:23D14 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).68C2^2 | 448,1157 |
(C23xD7).69C22 = C42:24D14 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).69C2^2 | 448,1158 |
(C23xD7).70C22 = C42:25D14 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).70C2^2 | 448,1164 |
(C23xD7).71C22 = D7xC4:1D4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).71C2^2 | 448,1167 |
(C23xD7).72C22 = C42:26D14 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).72C2^2 | 448,1168 |
(C23xD7).73C22 = C42:28D14 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).73C2^2 | 448,1173 |
(C23xD7).74C22 = C2xC23.23D14 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).74C2^2 | 448,1242 |
(C23xD7).75C22 = C2xC28:7D4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).75C2^2 | 448,1243 |
(C23xD7).76C22 = C2xDic7:D4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).76C2^2 | 448,1255 |
(C23xD7).77C22 = C2xC28:D4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).77C2^2 | 448,1256 |
(C23xD7).78C22 = C2xC28.23D4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 224 | | (C2^3xD7).78C2^2 | 448,1267 |
(C23xD7).79C22 = C14.1452+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).79C2^2 | 448,1282 |
(C23xD7).80C22 = C14.1462+ 1+4 | φ: C22/C1 → C22 ⊆ Out C23xD7 | 112 | | (C2^3xD7).80C2^2 | 448,1283 |
(C23xD7).81C22 = C22.58(D4xD7) | φ: C22/C2 → C2 ⊆ Out C23xD7 | 224 | | (C2^3xD7).81C2^2 | 448,198 |
(C23xD7).82C22 = (C2xC4):9D28 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 224 | | (C2^3xD7).82C2^2 | 448,199 |
(C23xD7).83C22 = D14:C42 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 224 | | (C2^3xD7).83C2^2 | 448,200 |
(C23xD7).84C22 = D14:(C4:C4) | φ: C22/C2 → C2 ⊆ Out C23xD7 | 224 | | (C2^3xD7).84C2^2 | 448,201 |
(C23xD7).85C22 = D14:C4:C4 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 224 | | (C2^3xD7).85C2^2 | 448,202 |
(C23xD7).86C22 = C4xD14:C4 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 224 | | (C2^3xD7).86C2^2 | 448,472 |
(C23xD7).87C22 = C23.44D28 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 112 | | (C2^3xD7).87C2^2 | 448,489 |
(C23xD7).88C22 = C24.12D14 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 224 | | (C2^3xD7).88C2^2 | 448,490 |
(C23xD7).89C22 = C4:(D14:C4) | φ: C22/C2 → C2 ⊆ Out C23xD7 | 224 | | (C2^3xD7).89C2^2 | 448,521 |
(C23xD7).90C22 = D14:C4:6C4 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 224 | | (C2^3xD7).90C2^2 | 448,523 |
(C23xD7).91C22 = C2xC42:D7 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 224 | | (C2^3xD7).91C2^2 | 448,925 |
(C23xD7).92C22 = C2xC4xD28 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 224 | | (C2^3xD7).92C2^2 | 448,926 |
(C23xD7).93C22 = C2xD7xC22:C4 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 112 | | (C2^3xD7).93C2^2 | 448,937 |
(C23xD7).94C22 = C2xDic7:4D4 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 224 | | (C2^3xD7).94C2^2 | 448,938 |
(C23xD7).95C22 = C2xD14.D4 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 224 | | (C2^3xD7).95C2^2 | 448,941 |
(C23xD7).96C22 = C2xD14:D4 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 224 | | (C2^3xD7).96C2^2 | 448,942 |
(C23xD7).97C22 = C2xC4:C4:7D7 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 224 | | (C2^3xD7).97C2^2 | 448,955 |
(C23xD7).98C22 = C2xD28:C4 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 224 | | (C2^3xD7).98C2^2 | 448,956 |
(C23xD7).99C22 = C2xD14.5D4 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 224 | | (C2^3xD7).99C2^2 | 448,958 |
(C23xD7).100C22 = C2xC4:D28 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 224 | | (C2^3xD7).100C2^2 | 448,959 |
(C23xD7).101C22 = C2xD14:Q8 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 224 | | (C2^3xD7).101C2^2 | 448,961 |
(C23xD7).102C22 = C2xD14:2Q8 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 224 | | (C2^3xD7).102C2^2 | 448,962 |
(C23xD7).103C22 = D7xC42:C2 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 112 | | (C2^3xD7).103C2^2 | 448,973 |
(C23xD7).104C22 = C42:8D14 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 112 | | (C2^3xD7).104C2^2 | 448,977 |
(C23xD7).105C22 = C4xD4xD7 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 112 | | (C2^3xD7).105C2^2 | 448,997 |
(C23xD7).106C22 = C42:12D14 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 112 | | (C2^3xD7).106C2^2 | 448,1000 |
(C23xD7).107C22 = C4:C4:21D14 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 112 | | (C2^3xD7).107C2^2 | 448,1059 |
(C23xD7).108C22 = D7xC22:Q8 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 112 | | (C2^3xD7).108C2^2 | 448,1079 |
(C23xD7).109C22 = C4:C4:26D14 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 112 | | (C2^3xD7).109C2^2 | 448,1080 |
(C23xD7).110C22 = C4:C4:28D14 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 112 | | (C2^3xD7).110C2^2 | 448,1109 |
(C23xD7).111C22 = C22xD14:C4 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 224 | | (C2^3xD7).111C2^2 | 448,1240 |
(C23xD7).112C22 = C2xC4xC7:D4 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 224 | | (C2^3xD7).112C2^2 | 448,1241 |
(C23xD7).113C22 = C2xC28:2D4 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 224 | | (C2^3xD7).113C2^2 | 448,1253 |
(C23xD7).114C22 = C2xD14:3Q8 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 224 | | (C2^3xD7).114C2^2 | 448,1266 |
(C23xD7).115C22 = (C2xC28):15D4 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 112 | | (C2^3xD7).115C2^2 | 448,1281 |
(C23xD7).116C22 = C22xC4oD28 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 224 | | (C2^3xD7).116C2^2 | 448,1368 |
(C23xD7).117C22 = C22xD4:2D7 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 224 | | (C2^3xD7).117C2^2 | 448,1370 |
(C23xD7).118C22 = C22xQ8:2D7 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 224 | | (C2^3xD7).118C2^2 | 448,1373 |
(C23xD7).119C22 = C2xD7xC4oD4 | φ: C22/C2 → C2 ⊆ Out C23xD7 | 112 | | (C2^3xD7).119C2^2 | 448,1375 |
(C23xD7).120C22 = D7xC2.C42 | φ: trivial image | 224 | | (C2^3xD7).120C2^2 | 448,197 |
(C23xD7).121C22 = D7xC2xC42 | φ: trivial image | 224 | | (C2^3xD7).121C2^2 | 448,924 |
(C23xD7).122C22 = C2xD7xC4:C4 | φ: trivial image | 224 | | (C2^3xD7).122C2^2 | 448,954 |
(C23xD7).123C22 = D7xC23xC4 | φ: trivial image | 224 | | (C2^3xD7).123C2^2 | 448,1366 |
(C23xD7).124C22 = C22xQ8xD7 | φ: trivial image | 224 | | (C2^3xD7).124C2^2 | 448,1372 |